
Riemann’s Theorem and the Genus
Unit 11

Gil Cohen

December 3, 2024

Gil Cohen Riemann’s Theorem and the Genus



Overview

1 Principal, zero, and pole divisors

2 The group of principal divisors and the divisor class group

3 The degree of the zero and pole divisors

4 Riemann’s Theorem

5 The Genus

Gil Cohen Riemann’s Theorem and the Genus



Principal, zero, and pole divisors

Definition 1

Let F/K be a function field. For an element x ∈ F× we defined the
principal divisor of x by

(x) =
∑
p∈P

υp(x)p ∈ D̃.

We further define the zero divisor and pole divisor of x by

(x)0 =
∑
p∈P

υp(x)>0

υp(x)p ∈ D̃,

(x)∞ = −
∑
p∈P

υp(x)<0

υp(x)p ∈ D̃.

We will soon justify the name divisor of these pseudo divisors.
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Principal, zero, and pole divisors

Lemma 2

Let F/K be a function field. Let x ∈ F× and S ⊆ P finite s.t.

∀p ∈ S υp(x) > 0.

Then,
deg(x)S ≤ [F : K(x)].

Proof.

The assertion is trivial for x ∈ K×, so assume x ∈ F \ K. Let

a = (x)S =
∑
p∈S

υp(x)p ≥ 0.

By a result we proved,

dimK L(a,S)
/
L(0,S) = deg aS − deg 0S = deg a.
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Principal, zero, and pole divisors

Proof.

dimK L(a,S)
/
L(0,S) = deg a.

So we interpreted deg a as a dimension of a certain K-vector space.

Hence, it suffices to prove that for any k > [F : K(x)], any
y1, . . . , yk ∈ L(a,S) are linearly dependent over K modulo L(0,S).

That is, we want to find a1, . . . , ak ∈ K, not all zeros, s.t.

k∑
i=1

aiyi ∈ L(0,S).

As k > [F : K(x)] there are f1(x), . . . , fk(x) ∈ K(x), not all zeros, s.t.

k∑
i=1

fi (x)yi = 0.
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Principal, zero, and pole divisors

Proof.

There are f1(x), . . . , fk(x) ∈ K(x), not all zeros, s.t.

k∑
i=1

fi (x)yi = 0.

We may assume all fi (x) ∈ K[x ], and not all are divisible by x in K[x ].

Write
fi (x) = gi (x) + ai , gi (x) ∈ xK[x ], ai ∈ K.

Thus,
k∑

i=1

aiyi = −
k∑

i=1

gi (x)yi .

Note that not all ai ’s are zero. So it suffices to show that RHS ∈ L(0,S).
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Principal, zero, and pole divisors

Proof.

We wish to show that
k∑

i=1

gi (x)yi ∈ L(0,S).

To this end, it suffices to show that

0 6= g(x) ∈ xK[x ], y ∈ L(a,S) =⇒ g(x)y ∈ L(0,S).

Fix p ∈ S , and note that, as υp(x) > 0,

υp(g(x)) ≥ υp(x).

Therefore, (g(x))S ≥ (x)S = a, and so

g(x)y ∈ g(x)L(a,S) = L(a− (g(x)),S)

= L(a− (g(x))S ,S) ⊆ L(0,S).
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Principal, zero, and pole divisors

Corollary 3

For all x 6∈ F×,
(x), (x)0, (x)∞ ∈ D.

Moreover, if x ∈ F \ K then

deg(x)0, deg(x)∞ ≤ [F : K(x)].

Proof.

The proof is straightforward for x ∈ K×, so assume x ∈ F \ K.

Lemma 2 implies that (x)0 must be a divisor as the number of places p
that appear in (x)0 cannot exceed [F : K(x)] <∞. Indeed,

deg(x)0 ≤ [F : K(x)].

To prove the assertion regarding (x)∞, recall it is equal to (x−1)0.
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The group of principal divisors and the divisor class group

Definition 4

The set of all principal divisors of F/K is called the group of principal
divisors of F/K

P =
{

(x) | x ∈ F×
}
.

P is indeed a group as

(x) + (y) = (xy)

(1) = 0

(x) + (x−1) = (xx−1) = (1) = 0.

P is a subgroup of D.

Definition 5

The group C = D/P is called the divisor class group.
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The degree of the zero and pole divisors

Definition 6 (Integral elements)

Let S/R be a ring extension. An element x ∈ S is said to be integral over
R if there exists a monic f (T ) ∈ R[T ] s.t. f (x) = 0.

Claim 7

Let F/K be a function field. Let x ∈ F \ K and y1, . . . , yn ∈ F. Then,

1 If y1, . . . , yn are linearly independent over K(x) then{
x iyj | i ≥ 0, j ∈ [n]

}
are linearly independent over K.

2 There exists 0 6= g(x) ∈ K[x ] s.t. g(x)y1, . . . , g(x)yn ∈ F are
integral over K[x ].
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The degree of the zero and pole divisors

Proof.

The first item is straightforward and is left as an exercise.

Consider any fixed y = yj .

As [F : K(x)] <∞, F/K(x) is algebraic. Hence, ∃f0, . . . , fd−1 ∈ K(x), not
all zero, s.t.

yd + fd−1y
d−1 + · · ·+ f1y + f0 = 0.

So, for an appropriate choice of g ∈ K[x ], we get

(gy)d + (gfd−1)(gy)d−1 + · · ·+ gd f0 = 0,

with gfi ∈ K[x ]. Thus, gy is integral over K[x ].

The same argument can be extended to all of y1, . . . , yn simultaneously.
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The degree of the zero and pole divisors

Claim 8

Let F/K be a function field. Let x ∈ F, and let y ∈ F integral over K[x ].
Then for every p ∈ P,

υp(x) ≥ 0 =⇒ υp(y) ≥ 0.

Proof.

Take f0(x), . . . , fd−1(x) ∈ K[x ] s.t.

yd + fd−1(x)yd−1 + · · ·+ f1(x)y + f0(x) = 0.

We may assume y 6= 0 and write

y = −fd−1(x)− fd−2(x)y−1 − · · · − f0(x)(y−1)d−1.
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The degree of the zero and pole divisors

Proof.

y = −fd−1(x)− fd−2(x)y−1 − · · · − f0(x)(y−1)d−1.

As υp(x) ≥ 0 we have that υp(fi (x)) ≥ 0.

Had it been the case that υp(y) < 0 we would get υp(y−1) > 0 and so,
υp(RHS) ≥ 0, contradicting the assumption υp(y) < 0.
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The degree of the zero and pole divisors

Theorem 9

Let x ∈ F \ K. Then,

deg(x)0 = deg(x)∞ = [F : K(x)].

In particular, deg(x) = 0.

The theorem, in particular, says that every function has the same number
of zeros and poles, when counted with multiplicities.

Proof.

It suffice to prove that deg(x)∞ = [F : K(x)] as (x)0 = (x−1)∞, and since

[F : K(x)] = [F : K(x−1)].

Moreover, by Corollary 3, it suffices to prove that

deg(x)∞ ≥ [F : K(x)].
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The degree of the zero and pole divisors

Proof.

We wish to prove that

deg(x)∞ ≥ [F : K(x)] = n.

Take y1, . . . , yn ∈ F that are linearly independent over K(x). By Claim 7,
we may assume these are integral over K[x ].

Claim 8 implies that if υp(yj) < 0 for some j ∈ [n] then υp(x) < 0.

Since Corollary 3 implies that (x)∞ is supported on finitely many prime
divisors, for a sufficiently large integer k it holds that

k(x)∞ ≥ (yj)∞ ∀j ∈ [n].
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The degree of the zero and pole divisors

Proof.

Now, for any integer ` ≥ 0 we have that for every 0 ≤ i ≤ `,

(x iyj) + (k + `)(x)∞ = i(x) + (yj) + k(x)∞ + `(x)∞

= i(x)0 − i(x)∞ + (yj)0 − (yj)∞ + k(x)∞ + `(x)∞

= i(x)0 + (yj)0 + (k(x)∞ − (yj)∞) + (`− i)(x)∞

≥ 0.

Thus,
{x iyj | 0 ≤ i ≤ `, j ∈ [n]} ⊆ L((k + `)(x)∞).

As by Claim 7, the above are linearly independent over K,

dim(k + `)(x)∞ ≥ n(`+ 1).
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The degree of the zero and pole divisors

Proof.

dim(k + `)(x)∞ ≥ n(`+ 1). (1)

Recall though that we proved that for every positive divisor a ≥ 0,

dim a ≤ deg a + 1.

Thus,
(k + `) deg(x)∞ = deg(k + `)(x)∞ ≥ n(`+ 1)− 1,

and so, as `→∞,

deg(x)∞ ≥
`+ 1

`+ k
· n − 1

`+ k
−→ n,

implying deg(x)∞ ≥ n.
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The degree of the zero and pole divisors

By inspecting the proof of Theorem 9 we also conclude

Corollary 10

∀x ∈ F \ K ∃q ∈ N s.t.

∀m ∈ N degm(x)∞ − dimm(x)∞ ≤ q.

Proof.

In Equation (1) we showed that ∃k ∈ N s.t. ∀` ≥ 0

dim(k + `)(x)∞ ≥ (`+ 1) deg(x)∞.

Write m = k + `. Then, ∀m ≥ k ,

dimm(x)∞ ≥ (m − k + 1) deg(x)∞.
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The degree of the zero and pole divisors

Proof.

Equivalently, ∀m ≥ k ,

degm(x)∞ − dimm(x)∞ ≤ (k − 1) deg(x)∞ = q.

Note that q is independent of m.

The proof then follows by the monotonicity of deg− dim.
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Riemann’s Theorem

Theorem 11 (Riemann’s Theorem)

Let F/K be a function field, and x ∈ F \ K. Define

q = max {degm(x)∞ − dimm(x)∞ | m ∈ N} .

Then,
∀a ∈ DF/K deg a− dim a ≤ q.

Proof.

Recall that for divisors a, b,

a ≤ b =⇒ deg a− dim a ≤ deg b− dim b, (2)

and so we may assume a ≥ 0.
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Riemann’s Theorem

Proof.

For every m ∈ N,
m(x)∞ − a ≤ m(x)∞,

and so by invoking Equation (2) again

deg(m(x)∞ − a)− dim(m(x)∞ − a) ≤ degm(x)∞ − dimm(x)∞ ≤ q.

Therefore,

dim(m(x)∞ − a) ≥ deg(m(x)∞ − a)− q

= m deg(x)∞ − deg a− q.

Thus, for a sufficiently large m, dim(m(x)∞ − a) > 0 and we can find

0 6= y ∈ L(m(x)∞ − a).
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Riemann’s Theorem

Proof.

0 6= y ∈ L(m(x)∞ − a).

Thus,
(y) + m(x)∞ − a ≥ 0,

equivalently,
a + (y−1) ≤ m(x)∞.

Invoking Equation (2) again we get

deg
(
a + (y−1)

)
− dim

(
a + (y−1)

)
≤ deg (m(x)∞)− dim (m(x)∞) ≤ q.

The proof then follows as

deg
(
a + (y−1)

)
= deg a + deg(y−1) = deg a,

dim
(
a + (y−1)

)
= dim a.

Gil Cohen Riemann’s Theorem and the Genus



Overview

1 Principal, zero, and pole divisors

2 The group of principal divisors and the divisor class group

3 The degree of the zero and pole divisors

4 Riemann’s Theorem

5 The Genus

Gil Cohen Riemann’s Theorem and the Genus



The Genus

Definition 12 (The Genus)

Let F/K be a function field. The number g satisfying

g − 1 = max
{

deg a− dim a | a ∈ DF/K

}
is called the genus of F/K.

Note that g ≥ 0. Indeed, L(0) = K and so dim 0 = 1. Thus,

g − 1 ≥ deg 0− dim 0 = 0− 1.
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The Genus

Observe that ∀x ∈ F \ K,

g − 1 = max {degm(x)∞ − dimm(x)∞ | m ∈ N} .

Indeed, the RHS was defined to be q = qx with respect to a specific x .
But then by Riemann’s Theorem,

qy = max {degm(y)∞ − dimm(y)∞ | m ∈ N} ≤ qx .

As the argument works for all x , y we get qx = qy .
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The genus of the rational function field

Claim 13

The genus of the rational function field K(x)/K is 0.

Proof.

By the above remark,

g − 1 = max {degm(x)∞ − dimm(x)∞ | m ∈ N}

Since
(x) = p0 − p∞,

we have that

degm(x)∞ = m deg(x)∞ = m deg p∞ = m,

dimm(x)∞ = dimmp∞ = m + 1,

and so
g − 1 = max

m∈N
(m − (m + 1)) =⇒ g = 0.
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Exercise

Recall that we proved that for every divisor a ≥ 0,

dim a ≤ deg a + 1.

Exercise. Prove that the bound holds for all a ∈ D with deg a ≥ 0.
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Clifford’s Theorem

We will later see that

deg a ≥ 2g − 1 =⇒ dim a = deg a + 1− g .

In the assignment you will prove a result on the lower degree divisors.

Theorem 14 (Clifford’s Theorem)

∀a ∈ D with 0 ≤ deg a ≤ 2g − 2,

dim a ≤ 1 +
1

2
· deg a.

The proof is based on The Riemann-Roch Theorem and on

Lemma 15

∀a, b ∈ D with dim a, dim b > 0,

dim a + dim b ≤ 1 + dim(a + b).
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