Problem Set 5

Problem 5.1 Let $G=(V, E, w)$ be a graph, prove the following statements:

1. $\sum_{a, b \in V} R_{\mathrm{eff}}(a, b)=n \sum \frac{1}{\lambda_{i}}$ where we sum over non zero eigenvalues of $L(G)$.
2. G is a tree \Longleftrightarrow for every $a, b \in V, R_{\text {eff }}(a, b)=\sum_{e \in \delta} \frac{1}{w_{e}}$ where δ is the lightest path between a and b.

Problem 5.2

1. Let M be a PSD, and let X be a non zero, diagonal matrix with non negative entries. Prove that $M+X$ is positive definite.
2. Let $G=(V, E, w)$ be a graph, and let $\emptyset \neq B \subseteq V$. Denote by $S=V \backslash B$. Prove that $L(S, S)=$ $L\left(G_{S}\right)+X$ where $L(S, S)$ is the sub-matrix of $L(G)$ defined by taking the rows and columns of S, and X is a diagonal matrix such that $X_{a, a}=\sum_{b \in B,(a, b) \in E} w_{a, b}$.
3. Conclude that for every graph $G=(V, E, w)$, a subset $B \subseteq V$ and a function $f: B \rightarrow \mathbb{R}$ there is a unique extension $\tilde{f}: V \rightarrow \mathbb{R}$ such that $\left.\tilde{f}\right|_{B}=f$ and \tilde{f} is harmonic on $V \backslash B$.

Problem 5.3 In class we analyzed the width-3 replacement product when operating on error vectors of the form $\mathbf{y} \otimes(\mathbf{u} \otimes \mathbf{u})$ where $\mathbf{y} \perp \mathbf{1}$. Complete the analysis of the width-3 replacement product for general error vectors $\mathbf{x} \perp \mathbf{1}$.

