Spectral Graph Theory

Winter 2020

Problem Set 5

Publish Date: December 29, 2020

Due Date: January 12, 2021

Problem 5.1 Let G = (V, E, w) be a graph, prove the following statements:

- 1. $\sum_{a,b\in V} R_{\text{eff}}(a,b) = n \sum \frac{1}{\lambda_i}$ where we sum over non zero eigenvalues of L(G).
- 2. G is a tree \iff for every $a, b \in V$, $R_{\text{eff}}(a, b) = \sum_{e \in \delta} \frac{1}{w_e}$ where δ is the lightest path between a and b.

Problem 5.2

- 1. Let M be a PSD, and let X be a non zero, diagonal matrix with non negative entries. Prove that M + X is positive definite.
- 2. Let G = (V, E, w) be a graph, and let $\emptyset \neq B \subseteq V$. Denote by $S = V \setminus B$. Prove that $L(S, S) = L(G_S) + X$ where L(S, S) is the sub-matrix of L(G) defined by taking the rows and columns of S, and X is a diagonal matrix such that $X_{a,a} = \sum_{b \in B, (a,b) \in E} w_{a,b}$.
- 3. Conclude that for every graph G = (V, E, w), a subset $B \subseteq V$ and a function $f : B \to \mathbb{R}$ there is a unique extension $\tilde{f} : V \to \mathbb{R}$ such that $\tilde{f}|_B = f$ and \tilde{f} is harmonic on $V \setminus B$.

Problem 5.3 In class we analyzed the width-3 replacement product when operating on error vectors of the form $\mathbf{y} \otimes (\mathbf{u} \otimes \mathbf{u})$ where $\mathbf{y} \perp \mathbf{1}$. Complete the analysis of the width-3 replacement product for general error vectors $\mathbf{x} \perp \mathbf{1}$.