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Modules

Definition 1 (Modules)

Let R be a (commutative unital) ring. An abelian group (M,+) is said to
be an R-module w.r.t an operation · : R×M→ M such that

1 r · (m1 + m2) = r ·m1 + r ·m2

2 (r1 + r2) ·m = r1 ·m + r2 ·m
3 (r1r2) ·m = r1 · (r2 ·m)

4 1 ·m = m

Remarks.

When R is a field, an R-module is simply an R-vector space.

Any ideal M of R is an R-module.

Any R-module that is contained in R is an ideal of R.

Z-modules are precisely abelian groups.
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Modules

Definition 2

An R-module M is finitely generated if ∃m1, . . . ,mn ∈ M s.t.

M = Rm1 + · · ·+ Rmn.

Remark When R is a field, hence M an R-vector space, this means M is
finite dimensional over R. A generating set is a spanning set (but not
necessarily a basis).

Gil Cohen Integrality and the Complementary Module



Separable extensions

Throughout this unit, we let F/L be a finite extension of E/K. Recall
that this means that F/E is finite, and we proved that this is equivalent
to L/K being finite.

We will further assume that F/E is separable. As we prove below, this
implies that L/K is separable.

Lemma 3

Let F/L be a finite extension of E/K. If F/E is separable then L/K is
separable.

Proof.

Take α ∈ L and f (T ) ∈ K[T ] its minimal polynomial over K. Since K is
algebraically closed in E, as we proved, f (T ) is also irreducible over E.

As α ∈ F and F/E is separable we have that f (T ) is separable.
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Integral elements

Definition 4 (Integral elements)

Let R be a domain with field of fractions K. Let L/K be a field extension.
We say that x ∈ L is integral over R if x is the root of a monic
polynomial f (T ) ∈ R[T ].

Note that

x is integral over R ⇐⇒ R[x ] is a finitely generated R-module.

Indeed, if deg f = d then

R[x ] = R + xR + · · ·+ xd−1R. (1)

On the other hand, if

R[x ] = f1(x)R + · · ·+ fe(x)R fi (x) ∈ R[x ]

then we get an equation as in (1) and so xd can be expressed as an
R-linear relation between 1, x , . . . , xd−1.

It is a (not so trivial) fact that x is integral over R iff R[x ] is contained in
a ring C that is finitely generated R-module.
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Integral closure

Definition 5

Let R be a domain with field of fractions K. Let L/K be a field extension.
The integral closure of R in L is the set of elements in L that are integral
over R.

Claim 6

The integral closure of R in L is a subring of L.

The proof readily follows by the nontrivial fact mentioned above.
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Integral elements

Definition 7

A domain R is said to be integrally closed if the integral closure of R in
its field of fractions K is equal to R.

Lemma 8

Let R be an integrally closed domain with field of fractions K. Let L/K
be an algebraic field extension. Take x ∈ L integral over R, and let
f (T ) ∈ K[T ] be its (monic) minimal polynomial over K. Then,

f (T ) ∈ R[T ].
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Integral ring extensions

Proof.

Note that all K-conjugates of x are also integral over R.

Recall that the coefficients of f (T ) are elementary symmetric
polynomials applied to the roots and, in particular, are all integral over R.

However, the coefficients are also in K and thus, as R is integrally closed,
all coefficients are in R.

We leave the following lemma as an exercise (we actually proved this in a
specific setting).

Lemma 9

Let K be the field of fractions of a domain R. Let x be an algebraic
element over K. Then, ∃0 6= a ∈ R s.t. ax is integral over R.
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Valuation rings are integrally closed

Lemma 10

Every valuation ring R is integrally closed.

Proof.

Let K = Frac R and let 0 6= x ∈ K integral over R. We wish to prove that
x ∈ R.

There are a0, . . . , an−1 ∈ R s.t.

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0.

Dividing by xn−1 and rearranging, we get

x = −an−1 − an−2(x−1)− · · · − a0(x−1)n−1.

If x ∈ R we are done. Otherwise, x−1 ∈ R and by the above equation
also is x .
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Valuation rings and integral closures

Theorem 11

Let R be a subdomain of a field L. Then, the integral closure of R in L is
the intersection of all valuation rings of L that contain R.

Proof. (addendum)

In one direction, take x ∈ L that is integral over R. Let O ⊆ L be a
valuation ring of L that contains R.

Since x is integral over R we have that x is integral over O. But recall
that

FracO = L.

As we proved in Lemma 10, O is integrally closed, and so x ∈ O.
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Valuation rings and integral closures

Proof.

As for the other direction, take x ∈ L that is not integral over R. We will
“cook up” a valuation ring O of L that contains R yet does not contain x .

Let S = R[x−1]. Note that x 6∈ S. Indeed, otherwise

x = a0 + a1(x−1) + · · ·+ an(x−1)n,

where a0, . . . , an ∈ R and so

xn+1 − a0x
n − · · · − an = 0,

implying that x is integral over R.
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Valuation rings and integral closures

Proof.

Since x 6∈ S = R[x−1] we have that x−1 is not a unit of S and so there
exists a maximal ideal m of S that contains x−1.

Consider the field K = S/m. As we saw in the recitation, the projection
S→ K can be extended to a place ϕ of L. Now,

x−1 ∈ m =⇒ ϕ(x−1) = 0 =⇒ ϕ(x) =∞.

Thus, the valuation ring O that corresponds to ϕ does not contain x .

To conclude the proof note that R ⊆ O (since S = R[x−1] ⊆ O).
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The trace function

Let L/K be a finite field extension. Given a ∈ L note that the map

ma : L→ L

x 7→ ax

is K-linear. Indeed, for x , y ∈ L

ma(x + y) = a(x + y) = ax + ay = ma(x) + ma(y).

Moreover, for k ∈ K,

ma(kx) = a(kx) = k(ax) = kma(x).

Let Ma denote the matrix corresponding to ma with respect to a fixed,
arbitrary, basis of L as a K-vector space. We define the trace map

TrL/K : L→ K

a 7→ trace(Ma).
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The trace function

Fix a ∈ L and denote the minimal polynomial of a over K by

f (x) = xn + cn−1x
n−1 + · · ·+ c1x + c0 ∈ K[x ].

Then, choosing the basis 1, a, a2, . . . , an−1 of K(a) over K, we get

and so
TrK(a)/K(a) = −cn−1.
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The trace function

Fix a ∈ L. If we construct the basis for L over K by first constructing a
basis for K(a) over K and then picking a basis of L over K(a) then Ma

takes the form of a block matrix

From this we see that

TrL/K(a) = [L : K(a)] · TrK(a)/K(a). (2)
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The trace function

TrL/K(a) = [L : K(a)] · TrK(a)/K(a).

Corollary 12

L/K not separable =⇒ TrL/K = 0.

Proof.

Fix a ∈ L. At least one of L/K(a), K(a)/K is not separable.

In the first case, for some e ≥ 1 we have that

pe = [L : K(a)]i | [L : K(a)].

Assume then that K(a)/K is not separable. Then, the minimal
polynomial f (x) of a over K is of degree pm for some m ≥ 1, and has the
form h(xp), and so the coefficient of xp

m−1 is 0. Thus,

TrK(a)/K(a) = 0.
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The trace function

Theorem 13

Let L/K be a finite separable extension. Let L̂ be the normal closure of

L/K. Let S be the set of K-embeddings of L into L̂. Then,

TrL/K(a) =
∑
σ∈S

σ(a).

Proof.

Let
f (x) = xn + cn−1x

n−1 + · · ·+ c1x + c0 ∈ K[x ]

be the minimal polynomial of a over K. One can show that

f (x) = χx(Ma) , det(xI −Ma),

where Ma is the matrix corresponding to multiplication by a in K(a).
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The trace function

Proof.

Denote the distinct K-conjugates of a by a = a1, . . . , am ∈ L̂. Then, since
a is separable over K,

m∏
i=1

(x − ai ) = f (x) = det(xI −Ma).

By definition,
TrK(a)/K(a) = trace(Ma).

In general, −trace(Ma) is the coefficient of xn−1 in det(xI −Ma). So,

TrK(a)/K(a) =
m∑
i=1

ai .

Equation (2) then implies that

TrL/K(a) = [L : K(a)] ·
m∑
i=1

ai . (3)
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The trace function

Proof.

Recall that
S =

{
σ : L ↪→ L̂ : σ|K = idK

}
.

Note that σ(a) = ai for some i = i(σ) ∈ [m]. Let

Si = {σ ∈ S : σ(a) = ai} .

It is known from Galois Theory that |Si | = |Sj | for all i , j . Thus,

|Si | =
|S |
m

=
[L : K]s

[K(a) : K]
=

[L : K]

[K(a) : K]
= [L : K(a)].

Therefore,

∑
σ∈S

σ(a) =
m∑
i=1

∑
σ∈Si

σ(a) = [L : K(a)] ·
m∑
i=1

ai .

The proof then follows by Equation (3).
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The trace function

The proof of the following result is left as an exercise.

Lemma 14

Let L′/L/K be a tower of finite field extensions. Then,

TrL′/K = TrL/K ◦ TrL′/L

We turn to prove

Theorem 15

Let L/K be a finite separable extension. Then, TrL/K 6= 0.

Proof.

First note we may assume that L/K is Galois. Indeed, consider the Galois

closure L̂ of L over K. By Lemma 14,

TrL̂/K 6= 0 =⇒ TrL/K 6= 0.
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The trace function

Proof.

Write L = K(α) and let f (x) ∈ K[x ] be the minimal polynomial of α over
K. Consider the basis 1, α, . . . , αn−1 of L over K.

Define the K-bilinear map

(x , y) 7→ TrL/K(xy),

and let M be the n × n matrix over L s.t.

Mi,j = TrL/K(αi+j).

We will show that det M 6= 0 which would imply that TrL/K 6= 0.

To this end, denote G = Gal(L/K). By Theorem 13,

TrL/K(αi+j) =
∑
σ∈G

σ(αi+j) =
∑
σ∈G

σ(α)i+j .
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The trace function

Proof.

So,
Mi,j =

∑
σ∈G

σ(α)i+j .

Define the n × n matrix N over L by

Ni,σ = σ(αi ).

Indeed, [L : K] = |Gal(L/K)| = |G |. Then,

(NNT)i,j =
∑
σ∈G

Ni,σNj,σ =
∑
σ∈G

σ(αi )σ(αj) =
∑
σ∈G

σ(α)i+j ,

and so M = NNT. Thus,

det M = (det N)2.
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The trace function

Proof.

We defined
Ni,σ = σ(αi ).

and proved that
det M = (det N)2.

We wish to show det M 6= 0 and it is therefore suffices to show that
det N 6= 0. But N is a Vandermonde matrix and so (under some arbitrary
order on G ),

det N =
∏
σ<τ

(σ(α)− τ(α)).

Since L = K(α), for σ 6= τ we have that σ(α) 6= τ(α). Therefore,
det N 6= 0.
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Dual bases

Let L/K be finite and separable. When considering L as a K-vector space
we may consider the dual space of L over K that is given by

L∗ = homK(L,K)

that consists of all K-linear maps from L to K.

Every x ∈ L induces an element ϕx ∈ L∗ that is given by

ϕx(y) = TrL/K(xy).

This map is indeed a K-linear functional as it is composition of
multiplication by x and the trace function.

For different x , x ′ we get distinct maps ϕx , ϕx′ for if ϕx = ϕx′ then

∀y ∈ L TrL/K(xy) = TrL/K(x ′y) =⇒ ∀y ∈ L TrL/K((x−x ′)y) = 0.

Theorem 15 then implies x = x ′.
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Dual bases

Recall
ϕx(y) = TrL/K(xy).

Consider the map

ψ : L→ L∗

x 7→ ϕx

This is a K-vector space monomorphism since, e.g.,

TrL/K((x + x ′)y) = TrL/K(xy) + TrL/K(x ′y).

Recall from linear algebra that

dimK L = dimK L∗ <∞,

and so, as ψ is one to one, we have that ψ is a K-vector space
isomorphism from L to L∗.

Moreover, for every basis z1, . . . , zn of L over K there is a dual basis
z∗1 , . . . , z

∗
n of L∗ over K that is characterized by

TrL/K(z∗i zj) = δi,j .
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Trace and integral elements

Claim 16

Let R be a subdomain of L with field of fractions K ⊆ L. Assume that R
is integrally closed. Then, ∀x ∈ L that is integral over R, we have that

TrL/K(x) ∈ R.

Proof.

σ(x) is integral over R for every embedding σ : L ↪→ L̂ over K. Thus, by
Theorem 13, TrL/K(x) is also integral over R. The proof follows since R
is integrally closed and TrL/K(x) ∈ K.
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Integral closure of a valuation ring

Definition 17

Let F/L is a finite separable extension of E/K, and let p be a prime
divisor of E/K. We denote by O′p the integral closure of Op in F.

Recall

Theorem (Theorem 11)

Let R (Op) be a subdomain of a field L (F). Then, the integral closure of
R in L (O′p) is the intersection of all valuation rings of L (F) that contain
R (Op).

By red-Theorem 11, O′p is precisely the intersection of all valuation rings
of F that contain Op. Thus,

O′p =
⋂
P/p

OP.
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Valuation rings and their integral closures are PID

Theorem 18

With the notation above, Op and O′p are both PID.

Proof. (addendum)

We start by considering O′p which recall is equal to ∩P/pOP. Take 0 6= J
an ideal of O′p. For every P/p let xP ∈ J be an element with “least”
valuation

kP , υP(xP) = min{υP(x) : x ∈ J}.

Since J ⊆ OP we have that υP(x) ≥ 0 for all x ∈ J and so the minimum
is well-defined.

Note that
∀P′/p υP′(xP) ≥ 0

as xP ∈ J ⊆ O′p ⊆ OP′ .
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Valuation rings and their integral closures are PID

Proof.

Fix P/p. By the WAT ∃zP ∈ F s.t.

υP(zP) = 0,

υP′(zP) > kP′ ≥ 0 ∀P′ 6= P.

Thus, zP ∈ O′p for all P/p. As xP ∈ J we get that

x ,
∑
P/p

xPzP ∈ J.

Clearly, xO′p ⊆ J. We turn to prove the converse.
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Valuation rings and their integral closures are PID

Proof.

First note that υP′(x) = kP′ for all P′/p. Indeed,

υP′(xP′zP′) = υP′(xP′) + υP′(zP′) = kP′ + 0 = kP′ ,

υP′(xPzP) = υP′(xP) + υP′(zP) ≥ υP′(zP) > kP′ ∀P′ 6= P.

Thus,

υP′(x) = υP′

∑
P/p

xPzP

 = kP′ .
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Valuation rings and their integral closures are PID

Proof.

Take z ∈ J. We wish to prove that z ∈ xOp′ , namely, that

z

x
∈ Op′ .

To this end we will show that

∀P/p z

x
∈ OP.

But,

υP

( z
x

)
= υP(z)− υP(x) = υP(z)− kP ≥ 0,

and the proof follows.

The same proof with F = E shows that Op is a PID. Indeed, in this case
the integral closure Op′ of Op in F = E is simply Op.
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Ideals of valuation rings

Definition 19

Let p be a prime divisor. An element t ∈ Op is called a local parameter
for p if υp(t) = 1.

Note that mp = tOp. Indeed,

∀x ∈ Op υp(tx) = υp(t) + υp(x) > 0 =⇒ tx ∈ mp.

On the other hand,

x ∈ mp =⇒ υp(x) ≥ 1 =⇒ υp(x/t) ≥ 0 =⇒ x ∈ tOp.

The following claim says that the ideals of Op form a chain.

Claim 20

Let Op be a valuation ring with local parameter t. Let 0 6= J ⊆ Op be an
ideal. Then,

∃k ∈ N J = tkOp.
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Ideals of valuation rings

Proof. (addendum)

Let
k = min {υp(x) | x ∈ J}

and let y ∈ J s.t. υp(y) = k . We will show that J = tkOp.

x ∈ J =⇒ υp(x) ≥ k =⇒ υp(x/tk) ≥ 0 =⇒ x ∈ tkOp.

On the other hand

x ∈ tkOp =⇒ xy

tk
∈ J =⇒ x ∈ tk

y
J.

But υp(tk/y) = 0 and so tk/y ∈ Op. Thus, x ∈ J.
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Modules over valuation rings

Claim 21 (addendum)

Let E/K be a function field and p a prime divisor. Let 0 6= J ⊆ E be an
Op-module. Assume that

min {υp(x) | x ∈ J} = k > −∞.

Then, J = tmOp for some m ∈ Z.

Proof.

Let t be a local parameter for p. Per our assumption,

t−kJ ⊆ Op.

Thus t−kJ is an Op-module that is contained in Op, namely, t−kJ is an
ideal of Op. By Claim 20,

∃` ≥ 0 t−kJ = t`Op

and so J = tk+`Op.
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Valuation rings and their integral closures are PID

Definition 22

A basis z1, . . . , zn of F/E for which

O′p =
n∑

i=1

Opzi

is called an integral basis of O′p over Op (or a local integral basis of F/E
for p).

Note that if z1, . . . , zn is a local integral basis for p then z1, . . . , zn ∈ O′p.

But z1, . . . , zn ∈ O′p only implies

O′p ⊇
n∑

i=1

Opzi .
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Valuation rings and their integral closures are PID

For every p there is a local integral basis. As a first step for proving that,
we prove the following.

Claim 23 (addendum)

Let z1, . . . , zn ∈ O′p be a basis of F/E, namely,

O′p ⊇
n∑

i=1

Opzi .

Then,

O′p ⊆
n∑

i=1

Opz
∗
i .
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Valuation rings and their integral closures are PID

Proof.

Given z ∈ O′p (even in F) we can write

z =
n∑

i=1

aiz
∗
i a1, . . . , an ∈ E.

Now, z , zj ∈ O′p and so zzj ∈ O′p. As Op is integrally closed (Lemma 10),
Claim 16 implies that

TrF/E(zzj) ∈ Op.

But

TrF/E(zzj) = TrF/E

(
n∑

i=1

aiz
∗
i zj

)
=

n∑
i=1

aiTrF/E(z∗i zj) = aj .

Thus, a1, . . . , an ∈ Op, proving the claim.
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Valuation rings and their integral closures are PID

Theorem 24 (addendum)

For every p there exists a local integral basis for p, namely, a basis
z1, . . . , zn of F/E s.t.

O′p =
n∑

i=1

Opzi .

Proof.

Let z1, . . . , zn be any basis for F/E. By repeatedly applying Lemma 9, we
may assume that

z1, . . . , zn ∈ O′p,

or equivalently,
n∑

j=1

Opzj ⊆ O′p.
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Valuation rings and their integral closures are PID

Proof.

z1, . . . , zn is a basis for F/E s.t.
∑n

j=1Opzj ⊆ O′p.

The key step of the proof is proving, by induction on k, that
∃u1, . . . , un ∈ O′p s.t.

O′p ∩
k∑

i=1

Opz
∗
i =

k∑
i=1

Opui .

By Claim 23, O′p ⊆
∑n

i=1Opz
∗
i . Thus, if we will prove the above, by

setting k = n, we can conclude that

O′p =
n∑

i=1

Opui ,

which will almost prove the lemma (we still have to show that u1, . . . , un
is a basis of F/E).
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Valuation rings and their integral closures are PID

Proof.

So, we wish to prove by induction on k , that ∃u1, . . . , un ∈ O′p s.t

O′p ∩
k∑

i=1

Opz
∗
i =

k∑
i=1

Opui .

The base case k = 0 is trivial (empty sum is 0).

Say that u1, . . . , uk−1 ∈ O′p satisfy that

O′p ∩
k−1∑
i=1

Opz
∗
i =

k−1∑
i=1

Opui .

Define

J = {ak ∈ Op | ∃a1, . . . , ak−1 ∈ Op s.t. a1z
∗
1 + · · ·+ akz

∗
k ∈ O′p}.

Observe that J is an ideal of Op.
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Valuation rings and their integral closures are PID

Proof.

J = {ak ∈ Op | ∃a1, . . . , ak−1 ∈ Op s.t. a1z
∗
1 + · · ·+ akz

∗
k ∈ O′p}.

By Theorem 18, Op is a PID and so

∃ak ∈ J J = akOp.

Let a1, . . . , ak−1 ∈ Op s.t.

uk = a1z
∗
1 + · · ·+ akz

∗
k ∈ O′p.

By the choice of uk and by the induction hypothesis, we get that

O′p ∩
k∑

i=1

Opz
∗
i ⊇

k∑
i=1

Opui .
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Valuation rings and their integral closures are PID

Proof.

On the other direction, take

z ∈ O′p ∩
k∑

i=1

Opz
∗
i .

Write
z = b1z

∗
1 + · · ·+ bkz

∗
k with b1, . . . , bk ∈ Op.

Thus, bk ∈ J = akOp and so ∃c ∈ Op s.t. bk = cak . Recall that

uk = a1z
∗
1 + · · ·+ akz

∗
k ∈ O′p.

As z , uk ∈ O′p we have that

z − cuk = (b1 − ca1)z∗1 + · · ·+ (bk−1 − cak−1)z∗k−1

∈ O′p ∩
k−1∑
i=1

Opz
∗
i =

k−1∑
i=1

Opui .
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Valuation rings and their integral closures are PID

Proof.

We conclude that

z ∈
k∑

i=1

Opui

which proves the claim. Namely, ∃u1, . . . , un ∈ O′p s.t.

O′p ∩
n∑

i=1

Opz
∗
i =

n∑
i=1

Opui

and so

O′p =
n∑

i=1

Opui .

It remains to show that u1, . . . , un is a basis of F/E.
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Valuation rings and their integral closures are PID

Proof.

Take z ∈ F. As z is algebraic over E, Lemma 9 implies that

∃b ∈ Op s.t. bz ∈ O′p.

That is, every element z of F is of the form a
b for a ∈ O′p, 0 6= b ∈ Op.

Now,

a =
n∑

i=1

ciui

for some c1, . . . , cn ∈ Op and so

z =
a

b
=

n∑
i=1

ci
b
ui .

Since ci , b ∈ Op we have that ci
b ∈ E, and so F =

∑n
i=1 Eui .

This shows that u1, . . . , un spans F over E. The proof follows as
[E : F] = n.
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The complementary module

As usual, let F/L be an extension of E/K s.t. F/E is finite and separable.

Let p be a prime divisor of E/K with a corresponding valuation ring Op.
Let O′p be the integral closure of Op in F.

Definition 25

The complementary module over Op is defined to be

Cp =
{
z ∈ F : TrF/E(zO′p) ⊆ Op

}
.

Recall that every valuation ring is integrally closed (Lemma 10).
Claim 16 then implies that O′p ⊆ Cp.

Note that Cp is closed under addition and that O′pCp ⊆ Cp. Thus, Cp, as
its name suggests, is an O′p-module and, in particular, it is also an Op

module.
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The complementary module

Cp =
{
z ∈ F : TrF/E(zO′p) ⊆ Op

}
.

Claim 26

Let z1, . . . , zn be a local integral basis of F/E for p, namely, z1, . . . , zn is
a basis of F over E s.t.

O′p =
n∑

i=1

Opzi

(as we know exists by Theorem 24). Then,

Cp =
n∑

i=1

Opz
∗
i .
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The complementary module

Proof.

Take z ∈ Cp. Recall that z∗1 , . . . , z
∗
n is a basis of F over E. Write z as

z =
n∑

i=1

xiz
∗
i where x1, . . . , xn ∈ E.

To prove that Cp ⊆
∑n

i=1Opz
∗
i it suffices to prove that x1, . . . , xn ∈ Op.

Fix j ∈ [n]. As zj ∈ O′p we have that

z ∈ Cp =⇒ TrF/E(zzj) ∈ Op.

But

TrF/E(zzj) = TrF/E

(
n∑

i=1

xiz
∗
i zj

)
=

n∑
i=1

xiTrF/E(z∗i zj) = xj ,

and so z ∈
∑n

i=1Opz
∗
i .
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The complementary module

Proof.

We turn to prove that Cp ⊇
∑n

i=1Opz
∗
i . To this end we need to take

z ∈
∑n

i=1Opz
∗
i , z ′ ∈ O′p and show that TrF/E(zz ′) ∈ Op.

Write

z =
n∑

i=1

xiz
∗
i z ′ =

n∑
j=1

yjzj ,

where xi , yj ∈ Op. Now,

TrF/E(zz ′) = TrF/E

∑
i,j

xiyjz
∗
i zj

 =
∑
i,j

xiyjTrF/E(z∗i zj)

=
∑
i

xiyi ∈ Op,

and the proof follows.
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The complementary module

Claim 27

For every p there exists tp ∈ F s.t. Cp = tpO′p.

Proof.

Theorem 24 guarantees the existence of a basis z1, . . . , zn of F/E s.t.

O′p =
n∑

i=1

Opzi .

Claim 26 then implies that

Cp =
n∑

i=1

Opz
∗
i .

By the WAT we can find x ∈ E s.t.

υp(x) ≥ −υP(z∗i ) ∀P/p, i ∈ [n].
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The complementary module

Proof.

υp(x) ≥ −υP(z∗i ) ∀P/p, i ∈ [n].

Thus, for all P/p and i ∈ [n],

υP(xz∗i ) = e(P/p)υp(x) + υP(z∗i ) ≥ 0.

Therefore, for every i ∈ [n],

xz∗i ∈
⋂
P/p

OP = O′p.

Recall that

Cp =
n∑

i=1

Opz
∗
i .

Thus,

xCp =
n∑

i=1

Opxz
∗
i ⊆ O′p.
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The complementary module

Proof.

So far we proved that

∃x ∈ E s.t. xCp ⊆ O′p.

Recall that Cp is an O′p-module. It is easy to see that xCp is also an
O′p-module. But xCp ⊆ O′p and so xCp is an ideal of O′p.

Since O′p is a PID (Theorem 18), we have that

xCp = yO′p

for some y ∈ O′p and so

Cp =
y

x
O′p,

which concludes the proof.
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The complementary module

Claim 28

Let t ∈ F be s.t. Cp = tO′p. Then,

∀P/p υP(t) ≤ 0.

Proof.

Recall that O′p ⊆ Cp and so O′p ⊆ tO′p, namely,

1

t
O′p ⊆ O′p.

Since 1 ∈ O′p, we have that

1

t
∈ O′p =

⋂
P/p

OP.

Thus, ∀P/p we have that υP( 1
t ) ≥ 0 and so υP(t) ≤ 0, as required.
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The complementary module

Claim 29

Let t ∈ F be s.t. Cp = tO′p. Then, for every t ′ ∈ F,

Cp = t ′O′p ⇐⇒ ∀P/p υP(t ′) = υP(t).

Proof.

In general, we have that

∀P/p υP

( t

t ′

)
≥ 0 ⇐⇒ t

t ′
∈
⋂
P/p

OP = O′p

⇐⇒ tO′p ⊆ t ′O′p.
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The complementary module

Proof.

So far, we showed that

∀P/p υP

( t

t ′

)
≥ 0 ⇐⇒ tO′p ⊆ t ′O′p.

So,

∀P/p υP(t ′) = υP(t) ⇐⇒ ∀P/p υP

( t

t ′

)
= 0

⇐⇒ t ′O′p = tO′p = Cp,

which concludes the proof.
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The complementary module

Claim 30

For all but finitely many p, Cp = O′p.

Proof. (addendum)

Let z1, . . . , zn be some basis of F/E with dual basis z∗1 , . . . , z
∗
n . Denote

by pi (x) ∈ E[x ] the minimal polynomial of zi over E. Similarly define
p∗i (x) ∈ E[x ] to be the minimal polynomial of z∗i over E.

Fix i ∈ [n]. Each coefficient of pi (x) is in E and so it has a finite number
of poles. Let Si be the union of poles taken over all coefficients of pi (x).
Note that Si is also finite.

Define S∗i similarly and let

S =
n⋃

i=1

(Si ∪ S∗i ).
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The complementary module

Proof.

Take any prime divisor p 6∈ S . Then, each of zi , z
∗
i are integral over Op,

namely, in O′p. Thus,∑
i

Opzi ⊆ O′p,
∑
i

Opz
∗
i ⊆ O′p.

By Claim 23 and since the dual of the dual basis is the original basis,

O′p ⊆
n∑

i=1

Opz
∗
i .

O′p ⊆
n∑

i=1

Opzi .
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The complementary module

Proof.

Overall, we have that

∑
i

Opzi ⊆ O′p ⊆
n∑

i=1

Opz
∗
i ⊆ O′p ⊆

∑
i

Opzi

and so all inclusions are equalities.

By Claim 26,

Cp =
n∑

i=1

Opz
∗
i .

However, by the above equation,

O′p =
n∑

i=1

Opz
∗
i ,

and so Cp = O′p, as required.
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