Algebraic Geometric Codes

Recitation 05b

Shir Peleg
Tel Aviv University

March 22, 2022

Example $E=\mathbb{F}_{q}(x)[y] /\left\langle y^{p}+y-x^{p+1}\right\rangle$.

Set $q=p^{2}, p$ is prime. We want to categorize all the rational (degree 1) places of E.

Example $E=\mathbb{F}_{q}(x)[y] /\left\langle y^{p}+y-x^{p+1}\right\rangle$.

Set $q=p^{2}, p$ is prime. We want to categorize all the rational (degree 1) places of E.
We have the following diagram

Where the first extension has $\operatorname{tr}-\operatorname{deg}$ of 1 , and the second extension is algebraic.

F is a field, or, $y^{p}+y-x^{p+1}$ is irreducible

Proof.

From Gauss lemma is is enough to show that the polynomial is irreducible over $\mathbb{F}_{q}[x][y] \cong \mathbb{F}_{q}[x, y] \cong \mathbb{F}_{q}[y][x]$ and thus it is enough to show that the polynomial is irreducible in $\mathbb{F}_{q}[y][x]$. This follows from Eisenstein's criterion with $p=y$.

Degree one palaces

We want to find all the degree one places in F. Note that P has degree one only if $\left.P\right|_{\mathbb{F}_{q}(x)}$ has degree one (this is necessary but not sufficient). Recall that the degree one places in $F_{q}(x)$ correspond to the valuations

$$
v_{\infty} \cup\left\{v_{x-\alpha} \mid \alpha \in F_{q}\right\} .
$$

We need to consider extensions of these valuations.

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

$$
v\left(y^{p}+y\right)=v\left(x^{p+1}\right)=-(p+1) c
$$

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

$$
v\left(y^{p}+y\right)=v\left(x^{p+1}\right)=-(p+1) c \neq \infty
$$

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

$$
p v(y)=v\left(y^{p}+y\right)=v\left(x^{p+1}\right)=-(p+1) c \neq \infty
$$

Therefore $p \mid v(x)$ denote $v(x)=-\alpha p$. It follows that $v(y)=-\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha=1$.
We found the only valuation (up to equivalence) that sits above v_{∞}. Is P, the corresponding place rational? From the theorem we proved last week, we have that

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

$$
p v(y)=v\left(y^{p}+y\right)=v\left(x^{p+1}\right)=-(p+1) c \neq \infty
$$

Therefore $p \mid v(x)$ denote $v(x)=-\alpha p$. It follows that $v(y)=-\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha=1$.
We found the only valuation (up to equivalence) that sits above v_{∞}. Is P, the corresponding place rational? From the theorem we proved last week, we have that

$$
\operatorname{deg}(P) \cdot\left[\Gamma\left(v_{\infty}\right): \Gamma(v)\right] \leq\left[F: \mathbb{F}_{q}(x)\right]
$$

Extensions of v_{∞}

Let v be an extension of v_{∞} to F, it follows that $v(x)=-c \in \mathbb{Z}_{<0}$. We have that

$$
p v(y)=v\left(y^{p}+y\right)=v\left(x^{p+1}\right)=-(p+1) c \neq \infty
$$

Therefore $p \mid v(x)$ denote $v(x)=-\alpha p$. It follows that $v(y)=-\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha=1$.
We found the only valuation (up to equivalence) that sits above v_{∞}. Is P, the corresponding place rational? From the theorem we proved last week, we have that

$$
\operatorname{deg}(P) \cdot p \leq p \Rightarrow \operatorname{deg}(P)=1
$$

Extensions of $v_{x-\alpha}$

For these valuations, we will consider the corresponding place:
$\varphi_{\alpha}: \mathbb{F}_{q}(x) \rightarrow \mathbb{F}_{q}: \quad \varphi_{\alpha}(x)=\alpha$.
We want to extend $\varphi: F \rightarrow L$, with $\left.\varphi\right|_{\mathbb{F}_{q}(x)}=\varphi_{\alpha}$. It follows that

$$
\varphi\left(y^{p}+y\right)=\varphi\left(x^{p+1}\right)=\alpha^{p+1}=N(\alpha) .
$$

Note that for every $\alpha \in \mathbb{F}_{q}, \alpha^{\prime}=N(\alpha) \in \mathbb{F}_{p}$. More over, the equation $y^{p}+y=\alpha^{\prime} \in \mathbb{F}_{p}$ has exactly p solutions in \mathbb{F}_{q}, i.e., there are p possible values for y in \mathbb{F}_{q} such that $\operatorname{Tr}(y)=\alpha^{\prime}$. Each of these values corresponds to an exstention of φ_{α}, where $L=\mathbb{F}_{q}$.

