Algebraic Geometric Codes

Recitation 05b

Shir Peleg

Tel Aviv University

March 22, 2022

Example $E = \mathbb{F}_q(x)[y]/\langle y^p + y - x^{p+1} \rangle$.

Set $q = p^2$, p is prime. We want to categorize all the rational (degree 1) places of E.

Example $E = \mathbb{F}_q(x)[y]/\langle y^p + y - x^{p+1} \rangle$.

Set $q = p^2$, p is prime. We want to categorize all the rational (degree 1) places of E.

We have the following diagram

 $\begin{array}{c} \mathsf{F} \\ | \\ \mathbb{F}_q(\mathsf{x}) \\ | \\ \mathbb{F}_q \end{array}$

Where the first extension has tr - deg of 1, and the second extension is algebraic.

F is a field, or,
$$y^p + y - x^{p+1}$$
 is irreducible

Proof.

From Gauss lemma is is enough to show that the polynomial is irreducible over $\mathbb{F}_q[x][y] \cong \mathbb{F}_q[x, y] \cong \mathbb{F}_q[y][x]$ and thus it is enough to show that the polynomial is irreducible in $\mathbb{F}_q[y][x]$. This follows from Eisenstein's criterion with p = y.

We want to find all the degree one places in F. Note that P has degree one only if $P|_{\mathbb{F}_q(x)}$ has degree one (this is necessary but not sufficient). Recall that the degree one places in $F_q(x)$ correspond to the valuations

$$\mathbf{v}_{\infty} \cup \{\mathbf{v}_{\mathbf{x}-\alpha} \mid \alpha \in F_{\mathbf{q}}\}.$$

We need to consider extensions of these valuations.

$$v(y^{p} + y) = v(x^{p+1}) = -(p+1)c$$

$$v(y^p+y)=v(x^{p+1})=-(p+1)c\neq\infty$$

$$pv(y) = v(y^p + y) = v(x^{p+1}) = -(p+1)c \neq \infty$$

Therefore $p \mid v(x)$ denote $v(x) = -\alpha p$. It follows that $v(y) = -\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha = 1$. We found the only valuation (up to equivalence) that sits above v_{∞} . Is P, the corresponding place rational? From the theorem we proved last week, we have that

$$pv(y) = v(y^p + y) = v(x^{p+1}) = -(p+1)c \neq \infty$$

Therefore $p \mid v(x)$ denote $v(x) = -\alpha p$. It follows that $v(y) = -\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha = 1$.

We found the only valuation (up to equivalence) that sits above v_{∞} . Is P, the corresponding place rational? From the theorem we proved last week, we have that

$$deg(P) \cdot [\Gamma(v_{\infty}) : \Gamma(v)] \leq [F : \mathbb{F}_q(x)]$$

$$pv(y) = v(y^p + y) = v(x^{p+1}) = -(p+1)c \neq \infty$$

Therefore $p \mid v(x)$ denote $v(x) = -\alpha p$. It follows that $v(y) = -\alpha(p+1)$. Up to equivalence (why?) we can assume that $\alpha = 1$. We found the only valuation (up to equivalence) that sits above v_{∞} . Is P, the corresponding place rational? From the theorem we proved last week, we have that

$$deg(P) \cdot p \leq p \Rightarrow deg(P) = 1.$$

For these valuations, we will consider the corresponding place:

 $\varphi_{\alpha}: \mathbb{F}_{q}(x) \to \mathbb{F}_{q}: \quad \varphi_{\alpha}(x) = \alpha.$ We want to extend $\varphi: F \to L$, with $\varphi \mid_{\mathbb{F}_{q}(x)} = \varphi_{\alpha}$. It follows that

$$\varphi(y^{p}+y)=\varphi(x^{p+1})=\alpha^{p+1}=N(\alpha).$$

Note that for every $\alpha \in \mathbb{F}_q$, $\alpha' = N(\alpha) \in \mathbb{F}_p$. More over, the equation $y^p + y = \alpha' \in \mathbb{F}_p$ has exactly p solutions in \mathbb{F}_q , i.e., there are p possible values for y in \mathbb{F}_q such that $Tr(y) = \alpha'$. Each of these values corresponds to an exstention of φ_{α} , where $L = \mathbb{F}_q$.