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Example E = Fy(x)[y]/{(y? +y — xP™1).

Set g = p?, pis prime. We want to categorize all the rational (degree 1) places
of E.
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Example E = Fy(x)[y]/{(y? +y — xP™1).

Set g = p?, pis prime. We want to categorize all the rational (degree 1) places
of E.
We have the following diagram

Where the first extension has tr — deg of 1, and the second extension is algebraic.
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F is a field, or, y? + y — xP™1 is irreducible

From Gauss lemma is is enough to show that the polynomial is irreducible over
Fq[x][y] = Fq[x, y] = Fqly][x] and thus it is enough to show that the
polynomial is irreducible in Fg[y][x]. This follows from Eisenstein’s criterion with
p=y. [
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Degree one palaces

We want to find all the degree one places in F. Note that P has degree one only
if P |, (x) has degree one (this is necessary but not sufficient). Recall that the
degree one places in Fy(x) correspond to the valuations

Voo U{Vx—q | v € Fg}.

We need to consider extensions of these valuations.
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Extensions of v

Let v be an extension of v to F, it follows that v(x) = —c € Z. We have
that
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Extensions of v

Let v be an extension of v to F, it follows that v(x) = —c € Z. We have
that
v(y? +y) = v(x*) = —(p+1)c
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Extensions of v

Let v be an extension of vy to F, it follows that v(x) = —c € Zo. We have
that

v(yP +y) = v(x*") = =(p + 1)c # o<
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Extensions of v

Let v be an extension of v to F, it follows that v(x) = —c € Zp. We have
that

pv(y) = v(y? +y) = v(xP") = =(p + 1)c # o0

Therefore p | v(x) denote v(x) = —ap. It follows that v(y) = —a(p + 1). Up
to equivalence (why?) we can assume that o = 1.

We found the only valuation (up to equivalence) that sits above v. Is P, the
corresponding place rational? From the theorem we proved last week, we have

that
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Extensions of v

Let v be an extension of v to F, it follows that v(x) = —c € Z. We have
that

pv(y) = v(yP +y) = v(x**t) = —(p+ 1)c # oo

Therefore p | v(x) denote v(x) = —ap. It follows that v(y) = —a(p + 1). Up
to equivalence (why?) we can assume that o = 1.
We found the only valuation (up to equivalence) that sits above v. Is P, the
corresponding place rational? From the theorem we proved last week, we have
that

deg(P) - [[(veo) : T(v)] < [F : Fg(x)]
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Extensions of v

Let v be an extension of v to F, it follows that v(x) = —c € Z. We have
that

pv(y) = v(yP +y) = v(xP"t) = —(p+ 1)c # oo

Therefore p | v(x) denote v(x) = —ap. It follows that v(y) = —a(p+ 1). Up
to equivalence (why?) we can assume that a = 1.

We found the only valuation (up to equivalence) that sits above v. Is P, the
corresponding place rational? From the theorem we proved last week, we have
that

deg(P)-p < p = deg(P) = 1.
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Extensions of v,_,

For these valuations, we will consider the corresponding place:
Vo 1 Fg(x) = Fq:  @a(x) =a.
We want to extend ¢ : F — L, with ¢ | ()= @q. It follows that

o(yP +y) = p(xPT1) = P! = N(a).

Note that for every a € Fy, o/ = N(«) € F,. More over, the equation

yP 4y =’ € F, has exactly p solutions in [Fy, i.e., there are p possible values
for y in Fy such that Tr(y) = o'. Each of these values corresponds to an
exstention of ¢, where L = F.
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