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Valuation rings

Definition 1 (Valuation rings)

Let R be a domain with fraction field F. We say that R is a valuation
ring if for all a ∈ F× either a ∈ R or a−1 ∈ R (or both).

We turn to show that a valuation gives rise to a valuation ring.

Definition 2

For a valuation υ on a field F, define

Oυ = {a ∈ F | υ(a) ≥ 0}.
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From valuations to valuation rings

Claim 3

Let υ be a valuation on a field F. Then, Oυ is a valuation ring with
FracOυ = F. Moreover,

O×υ = {a ∈ F | υ(a) = 0}.

Proof.

We first show Oυ is a ring.

Note that 0 ∈ Oυ as υ(0) =∞ ≥ 0.

As υ(a + b) ≥ min(υ(a), υ(b)), Oυ is closed under addition.

Similarly for multiplication since υ(ab) = υ(a) + υ(b).

The associativity and the distributive law are induced from F and so Oυ

is a ring.

Take a ∈ F×. Recall that υ(a−1) = −υ(a) and so one of υ(a),
υ(a−1) ≥ 0, namely, one of a, a−1 ∈ Oυ. Thus, Oυ is a valuation ring.
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From valuations to valuation rings

Proof.

Clearly, FracOυ ⊆ F (as usual, up to isomorphism). For the other
inclusion, take a ∈ F. If a ∈ Oυ we are done; otherwise, a−1 ∈ Oυ and so
a = 1

a−1 ∈ FracOυ.

It remains to show that a ∈ Oυ is a unit iff υ(a) = 0. Indeed,

a ∈ O×υ ⇐⇒ a−1 ∈ Oυ and a ∈ Oυ

⇐⇒ υ(a−1) ≥ 0 and υ(a) ≥ 0

⇐⇒ −υ(a) ≥ 0 and υ(a) ≥ 0

⇐⇒ υ(a) = 0.

Gil Cohen Valuation Rings



From valuations to valuation rings

Definition 4

Let υ be a valuation on a field F. Then, Oυ is called the valuation ring of
υ.

Claim 5

Let υ, υ′ be valuations on F. Then, υ, υ′ are equivalent iff Oυ = Oυ′ .

Proof.

The proof readily follows by definition, which we recall here

a ∈ Oυ ⇐⇒ υ(a) ≥ 0,

a ∈ Oυ′ ⇐⇒ υ′(a) ≥ 0.
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Valuations and valuation rings

To summarize, so far we established
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The maximal ideal of a valuation ring

Claim 6

Let R be a valuation ring with field of fractions F. Then, m = R \ R× is
the unique maximal ideal of R.

Proof.

Since a maximal ideal cannot contain a unit, if m is an ideal then it is
maximal and unique. We are thus left to prove that m is an ideal.

Take a ∈ m, r ∈ R. Note that ra 6∈ R× as otherwise

a−1 = (ra)−1r ∈ R

and so a ∈ R× in contradiction to a ∈ m = R \ R×. Thus,
ra ∈ R \ R× = m.

Gil Cohen Valuation Rings



The maximal ideal of a valuation ring

Proof.

It is left to show that m is closed under addition.

Take a, b ∈ m \ {0}. Since R is a valuation ring, we may assume wlog
that a

b ∈ R. Thus, 1 + a
b ∈ R and so

a + b = b
(

1 +
a

b

)
∈ m.
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The maximal ideal of a valuation ring

Since a valuation ring has a unique maximal ideal, the former determines
the latter.

In the other direction, if m is a maximal ideal of some valuation ring R
whose fraction field is F then that valuation ring is determined by m.
Indeed, I leave it for you as an exercise to prove that

R =

{
a ∈ F×

∣∣∣ 1

a
6∈ m

}
∪ {0}.

Intuitively, a is defined at a point exactly when its inverse does not vanish.
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The maximal ideal of a valuation ring

To summarize, so far we established
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From valuation rings to valuations

Recall Claim 5 which stated that for equivalent valuations υ, υ′ we have
Oυ = Oυ′ , and only for those.

Theorem 7

Let F be a field. The map υ 7→ Oυ induces a one to one map between
congruence class of valuations on F and valuation rings with fraction field
F.
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Valuations and valuation rings

To prove Theorem 7 we recall a claim from Unit 3.

Claim 8

Let Γ be an abelian group with a submonoid Γ+ satisfying

Γ+ ∩ (−Γ+) = {0},
Γ+ ∪ (−Γ+) = Γ.

Define an order on Γ by

α ≤ β ⇐⇒ β − α ∈ Γ+.

Under this order, Γ is an ordered group.
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Valuations and valuation rings

In fact, we will invoke the claim in its multiplicative form.

Claim 9

Let Γ be an abelian group with a submonoid Γ+ satisfying

Γ+ ∩ (Γ+)−1 = {1},
Γ+ ∪ (Γ+)−1 = Γ.

Define an order on Γ by

α ≤ β ⇐⇒ βα−1 ∈ Γ+.

Under this order, Γ is an ordered group.
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Valuations and valuation rings

Proof. (of Theorem 7)

Given Claim 5, to prove the theorem, we define an inverse map

R 7→ (υ : F× → Γ).

Let R be a valuation ring with Frac R = F. The trouble is that we
somehow need to come up with an ordered group Γ.

Denote S = R \ {0}. Note that S ,S−1 are submonoids of the
multiplicative group of F×, both containing R×. Since R is a valuation
ring,

S ∪ S−1 = F×,

S ∩ S−1 = R×.
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Valuations and valuation rings

Proof.

S ∪ S−1 = F×, S ∩ S−1 = R×.

As R× is a submonoid of both monoids S , S−1, we can take congruence
classes and get

S
/

R× ∪ S−1
/

R× = F×
/

R×

S
/

R× ∩ S−1
/

R× = R×
/

R× = {1}

Thus, by Claim 9, F×
/

R× is an ordered group.
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Valuations and valuation rings

Proof.

Consider the projection map

w : F× → F×
/

R×.

By Claim 9, we have that

w(a) ≤ w(b) ⇐⇒ w(b)

w(a)
∈ S
/

R×

⇐⇒ w(ba−1) ∈ S
/

R×

⇐⇒ ba−1 ∈ S .
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Valuations and valuation rings

Proof.

With this we turn to prove that

w : F× → F×
/

R×

is a valuation.

Take a, b ∈ F× with a + b 6= 0. Assume wlog w(a) ≤ w(b). Then,

a + b

a
= 1 +

b

a
∈ S

and so w(a + b) ≥ w(a).

Since w is a group homomorphism, w(ab) = w(a)w(b). Thus, w is a
valuation on F.
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Valuations and valuation rings

Proof.

Note that the map R 7→ w that we just defined is inverse to the map
υ 7→ Oυ. On the one hand,

Ow = {a ∈ F | w(a) ≥ 1} = {a ∈ F | a ∈ R} = R.
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Valuations and valuation rings

Proof.

On the other hand, if we start with υ, then

υ(a) ≥ 0 ⇐⇒ a ∈ Oυ.

By the definition of the map Oυ 7→ w (in additive notation)

a ∈ Oυ ⇐⇒ w(a) ≥ 0.

Thus, w is equivalent to υ.
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Valuations and valuation rings
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Example

Recall the example from the previous unit. Let K = Fq, let

f (x , y) = y2 − x3 + x ∈ K [x , y ],

and consider the domain

Cf = K[x , y ]
/
〈f (x , y)〉

whose field of fractions is denoted by Kf = FracCf .

Consider the point 0 = (0, 0) on the curve. We proved that

υ0(A(x) + B(x)y) = min (υ0(A(x)), 1 + υ0(B(x))) ,

where A(x),B(x) ∈ K(x).

Gil Cohen Valuation Rings



Example

υ0(A(x) + B(x)y) = min (υ0(A(x)), 1 + υ0(B(x))) .

Let O0 be the valuation ring corresponding to υ0, namely,

O0 = {z ∈ Kf | υ0(z) ≥ 0}.

Therefore,

O0 =

{
a(x)

b(x)
+ y

c(x)

d(x)

∣∣∣ b(0), d(0) 6= 0

}
,

with the understanding that a(x), b(x) are coprime and so are c(x), d(x).

Exercise. What is m0?
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To summarize
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