Hilbert's Basis Theorem and Algebras

Gil Cohen

May 20, 2019

Recall

Lemma

Let $A \subseteq B$ be rings s.t.

- A is a noetherian ring, and
- B is a f.g. A-module.

Then, B is a noetherian ring.

Discussion

Let $f(x, y) \in \bar{K}[x, y]$. Write it as

$$
f(x, y)=a_{n}(x) y^{n}+a_{n-1}(x) y^{n-1}+\cdots+a_{0}(x) \in \bar{K}[x, y] .
$$

Recall that $A=\bar{K}[x]$ is noetheiran (even PID etc). Further, if $a_{n}(x)=1$ then the ring $B=C_{f}$ is a f.g. A-module.

Discussion

In particular,

$$
B=A+A y+A y^{2}+\cdots+A y^{n-1}
$$

or, more precisely,

$$
B=A(1+\langle f\rangle)+A(y+\langle f\rangle)+\cdots+A\left(y^{n-1}+\langle f\rangle\right) .
$$

The above lemma then shows that C_{f} is a noetherian ring. In this unit we are going to strengthen the lemma so to conclude that C_{f} is a noetherian ring even without assuming anything about $a_{n}(x)$.

Theorem (Hilbert's Basis Theorem)

A ring A is noetherian $\Longleftrightarrow A[y]$ is noetherian.

Proof.

In the recitation.
Corollary
Let $A \subseteq B$ be rings s.t:

- A is a noetherian ring, and
- $\exists b_{1}, \ldots, b_{n} \in B$ s.t. $B=A\left[b_{1}, \ldots, b_{n}\right]$.

Then, B is a noetherian ring.

Proof.

Let $F=A\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials in n variables over A. By Hilbert's basis theorem, F is a noetherian ring. Consider the ring homomorphism

$$
\begin{aligned}
\varphi: F & \rightarrow B \\
f\left(x_{1}, \ldots, x_{n}\right) & \mapsto f\left(b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

Let $K=\operatorname{ker}(\varphi)$. Since φ is surjective, $B \cong F / K$. The proof follows then since F is noetherian and since quotient of a noetherian ring is noetherian.

Corollary

Let $f(x, y) \in \bar{K}[x, y]$ irreducible. Then, C_{f} is a noetherian domain.

Proof.

f irreducible $\Longrightarrow C_{f}$ is a domain. Assume w.l.o.g that $\operatorname{deg}_{y}(f)>0$. Then,

- $A=\bar{K}[x]$ is noetherian, and
- $A \subseteq C_{f}$. More precisely, $A \hookrightarrow C_{f}$.
- $C_{f}=A[y]$. More precisely, $C_{f}=(A+\langle f\rangle)[y+\langle f\rangle]$.

The proof then follows by the previous corollary.

Recall (proved in the homework assignment)

Claim

Let $f \in \bar{K}[x, y]$ irreducible. Then, $\operatorname{dim}\left(C_{f}\right)=1$.
We are now ready to prove a fundamental result connecting yet again algebra and geometry.

Theorem

Let $f \in \bar{K}[x, y]$ irreducible. Then,

$$
C_{f} \text { Dedekind domain } \Longleftrightarrow Z_{f}(\bar{K}) \text { is nonsingular }
$$

Proof.

By the above, since f is irreducible, C_{f} is a noetherian domain of dimension 1. It suffices to prove that

C_{f} integrally closed $\Longleftrightarrow Z_{f}(\bar{K})$ is nonsingular

In previous units we proved:

- Integrally closed is a local property.
- Hilbert's Nullstellensatz: Every maximal ideal of C_{f} is of the form $M=\langle x-a, y-b\rangle$ for some $(a, b) \in Z_{f}(\bar{K})$.
- $(a, b) \in Z_{f}(\bar{K})$ is nonsingular $\Longleftrightarrow\left(C_{f}\right)_{M}$ is a PID.
- Since $\left(C_{f}\right)_{M}$ is a local noetherian domain of dimension 1, $\left(C_{f}\right)_{M}$ is a PID $\Longleftrightarrow\left(C_{f}\right)_{M}$ is integrally closed.

Definition

Let A be a commutative ring. A ring M is an A-algebra if there exists a ring homomorphism $\phi: A \rightarrow M$ s.t. the elements $\phi(A)$ commute with all elements of M.

Remark

If M is an A-algebra then M is in particular an A-module. Indeed, one can define

$$
\begin{aligned}
\mu: A \times M & \rightarrow M \\
(a, m) & \mapsto \phi(a) m
\end{aligned}
$$

Example

- $K\left[x_{1}, \ldots, x_{n}\right]$ is a K-algebra.
- If I ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ then $K\left[x_{1}, \ldots, x_{n}\right] / I$ is a K-algebra.
- In particular, $C_{f}=K[x, y] /\langle f(x, y)\rangle$ is a K-algebra.
- The ring of $n \times n$ matrices over a ring A is an A-algebra.

Definition

Let M be an A-algebra. M is said to be a finitely generated A-algebra if $\exists m_{1}, \ldots, m_{n} \in M$ s.t. $M=A\left[m_{1}, \ldots, m_{n}\right]$.

Example

- All the above examples.

Claim

Let M be an A-algebra. M is f.g. A-algebra \Longleftrightarrow there exists an integer n and an ideal I of $A\left[x_{1}, \ldots, x_{n}\right]$ s.t.

$$
M \cong A\left[x_{1}, \ldots, x_{n}\right] / I
$$

Proof.

Clearly, $A\left[x_{1}, \ldots, x_{n}\right] / I$ is a f.g. A-algebra (with generators $\left.x_{1}+I, \ldots, x_{n}+I\right)$.
M is a f.g. A-algebra $\Longrightarrow M=A\left[m_{1}, \ldots, m_{n}\right]$ for $m_{1}, \ldots, m_{n} \in M$. Consider the ring homomorphism $\phi: A\left[x_{1}, \ldots, x_{n}\right] \rightarrow M$ that maps $x_{i} \mapsto m_{i}$ and fixes A. Let $K=\operatorname{ker}(\phi)$. Note that ϕ is surjective and so $M=A\left[x_{1}, \ldots, x_{n}\right] / K$.

Recall

Lemma

Let $A \subseteq B$ be rings such that:

- A is a noetherian ring, and
- B is a f.g. A-module.

Then, B is a noetherian ring.
The corollary of Hilbert's basis theorem can now be stated as

Lemma

Let $A \subseteq B$ be rings such that:

- A is a noetherian ring, and
- B is a f.g. A-algebra.

Then, B is a noetherian ring.

