Hilbert's Basis Theorem and Algebras

Gil Cohen

May 20, 2019

Gil Cohen Hilbert's Basis Theorem and Algebras

Recall

Lemma

Let $A \subseteq B$ be rings s.t.

- A is a noetherian ring, and
- B is a f.g. A-module.

Then, B is a noetherian ring.

Discussion

Let $f(x, y) \in \overline{K}[x, y]$. Write it as

$$f(x,y) = a_n(x)y^n + a_{n-1}(x)y^{n-1} + \dots + a_0(x) \in \bar{K}[x,y]$$

Recall that $A = \overline{K}[x]$ is noetheiran (even PID etc). Further, if $a_n(x) = 1$ then the ring $B = C_f$ is a f.g. A-module.

Discussion

In particular,

$$B = A + Ay + Ay^2 + \dots + Ay^{n-1}$$

or, more precisely,

$$B = A(1 + \langle f \rangle) + A(y + \langle f \rangle) + \dots + A(y^{n-1} + \langle f \rangle).$$

The above lemma then shows that C_f is a noetherian ring.

In this unit we are going to strengthen the lemma so to conclude that C_f is a noetherian ring even without assuming anything about $a_n(x)$.

Theorem (Hilbert's Basis Theorem)

A ring A is noetherian \iff A[y] is noetherian.

Proof.

In the recitation.

Corollary

Let $A \subseteq B$ be rings s.t:

- A is a noetherian ring, and
- $\exists b_1,\ldots,b_n \in B \text{ s.t. } B = A[b_1,\ldots,b_n].$

Then, B is a noetherian ring.

Proof.

Let $F = A[x_1, ..., x_n]$ be the ring of polynomials in *n* variables over *A*. By Hilbert's basis theorem, *F* is a noetherian ring. Consider the ring homomorphism

$$\varphi: F \to B$$

 $f(x_1, \ldots, x_n) \mapsto f(b_1, \ldots, b_n)$

Let $K = \ker(\varphi)$. Since φ is surjective, $B \cong F/K$. The proof follows then since F is noetherian and since quotient of a noetherian ring is noetherian.

Corollary

Let $f(x, y) \in \overline{K}[x, y]$ irreducible. Then, C_f is a noetherian domain.

Proof.

f irreducible $\implies C_f$ is a domain. Assume w.l.o.g that $\deg_v(f) > 0$. Then,

- $A = \overline{K}[x]$ is noetherian, and
- $A \subseteq C_f$. More precisely, $A \hookrightarrow C_f$.
- $C_f = A[y]$. More precisely, $C_f = (A + \langle f \rangle)[y + \langle f \rangle]$.

The proof then follows by the previous corollary.

Recall (proved in the homework assignment)

Claim

Let $f \in \overline{K}[x, y]$ irreducible. Then, dim $(C_f) = 1$.

We are now ready to prove a fundamental result connecting yet again algebra and geometry.

Theorem

Let $f \in \overline{K}[x, y]$ irreducible. Then,

 C_f Dedekind domain $\iff Z_f(\bar{K})$ is nonsingular

Proof.

By the above, since f is irreducible, C_f is a noetherian domain of dimension 1. It suffices to prove that

 C_f integrally closed $\iff Z_f(\bar{K})$ is nonsingular

In previous units we proved:

- Integrally closed is a local property.
- Hilbert's Nullstellensatz: Every maximal ideal of C_f is of the form M = ⟨x − a, y − b⟩ for some (a, b) ∈ Z_f(K
).
- $(a,b) \in Z_f(\bar{K})$ is nonsingular $\iff (C_f)_M$ is a PID.
- Since $(C_f)_M$ is a local noetherian domain of dimension 1, $(C_f)_M$ is a PID $\iff (C_f)_M$ is integrally closed.

Definition

Let A be a commutative ring. A ring M is an A-algebra if there exists a ring homomorphism $\phi : A \to M$ s.t. the elements $\phi(A)$ commute with all elements of M.

Remark

If M is an A-algebra then M is in particular an A-module. Indeed, one can define

$$\mu: A imes M o M$$

 $(a, m) \mapsto \phi(a)m$

Example

- $K[x_1, \ldots, x_n]$ is a K-algebra.
- If I ideal of $K[x_1, \ldots, x_n]$ then $K[x_1, \ldots, x_n]/I$ is a K-algebra.
- In particular, $C_f = K[x, y]/\langle f(x, y) \rangle$ is a K-algebra.
- The ring of $n \times n$ matrices over a ring A is an A-algebra.

Definition

Let *M* be an *A*-algebra. *M* is said to be a finitely generated *A*-algebra if $\exists m_1, \ldots, m_n \in M$ s.t. $M = A[m_1, \ldots, m_n]$.

Example

• All the above examples.

Claim

Let M be an A-algebra. M is f.g. A-algebra \iff there exists an integer n and an ideal I of $A[x_1, \ldots, x_n]$ s.t.

 $M \cong A[x_1,\ldots,x_n]/I.$

Proof.

Clearly, $A[x_1, \ldots, x_n]/I$ is a f.g. A-algebra (with generators $x_1 + I, \ldots, x_n + I$). *M* is a f.g. A-algebra $\implies M = A[m_1, \ldots, m_n]$ for $m_1, \ldots, m_n \in M$. Consider the ring homomorphism $\phi : A[x_1, \ldots, x_n] \rightarrow M$ that maps $x_i \mapsto m_i$ and fixes *A*. Let $K = \ker(\phi)$. Note that ϕ is surjective and so $M = A[x_1, \ldots, x_n]/K$.

Recall

Lemma

Let $A \subseteq B$ be rings such that:

• A is a noetherian ring, and

• B is a f.g. A-module.

Then, B is a noetherian ring.

The corollary of Hilbert's basis theorem can now be stated as

Lemma

Let $A \subseteq B$ be rings such that:

• A is a noetherian ring, and

• B is a f.g. A-algebra.

Then, B is a noetherian ring.