Algebraic	Geometry	for	Theoretical	Computer	Science
	Assignment 8				
Lecturer: Gil			Hand	date: Janua	1,2015

Instructions: Please write your solutions in $\mathrm{ET}_{\mathrm{EX}}$ / Word or exquisite handwriting. Submission can be done individually or in pairs.

The AG codes introduced in class can only yield meaningful results when the field size is larger than 4 . In this assignment we will construct codes from algebraic function fields in a different way than was used by Goppa. This will give us a chance to practice working with divisors and Riemann-Roch spaces while obtaining codes even for the binary field.

Let F / \mathbb{F}_{q} be an algebraic function field with genus g. let G_{1}, \ldots, G_{r} be effective divisors of F with pairwise disjoint supports, where $\operatorname{deg}\left(G_{i}\right)=d_{i}$. Let $n=\sum_{i=1}^{r} d_{i}$. This will be the length of the code. Let E be an effective divisor with a support that does not intersect any of the supports of the G_{i} 's. Let D be any divisor with $\operatorname{deg}(D) \geq 2 g-1$. Assume further that $1 \leq m \leq n-g$, where $m=\operatorname{deg}(E-D)$.

1. Prove that $\ell\left(D+G_{i}\right)=\ell(D)+d_{i}$ for all $i \in[r]$.

For each $i \in[r]$, let

$$
\left\{f_{i, j}+\mathcal{L}(D) \mid 1 \leq j \leq d_{i}\right\}
$$

be an \mathbb{F}_{q}-basis for the quotient space $\mathcal{L}\left(D+G_{i}\right) / \mathcal{L}(D)$.
2. Prove that $\left\{f_{i, j}+\mathcal{L}(D) \mid 1 \leq i \leq r, 1 \leq j \leq d_{i}\right\}$ is an $\mathbb{F}_{q^{-}}$-basis for the n dimensional quotient space $\mathcal{L}\left(D+\sum_{i=1}^{r} G_{i}\right) / \mathcal{L}(D)$. To this end, show that if h_{1}, \ldots, h_{r} are such that $h_{i} \in \mathcal{L}\left(D+G_{i}\right)$ for all $i \in[r]$ and $h_{1}+\cdots+h_{r} \in \mathcal{L}(D)$, then it holds that $h_{i} \in \mathcal{L}(D)$ for all $i \in[r]$.

By the above item, it follows that every

$$
f \in \mathcal{L}\left(D+\sum_{i=1}^{r} G_{i}-E\right) \subseteq \mathcal{L}\left(D+\sum_{i=1}^{r} G_{i}\right)
$$

has a unique representation

$$
f=\sum_{i=1}^{r} \sum_{j=1}^{d_{i}} c_{i, j} f_{i, j}+u,
$$

with $c_{i, j} \in \mathbb{F}_{q}$ and $u \in \mathcal{L}(D)$. With this, we define the code to be the image of the \mathbb{F}_{q}-linear map

$$
C: \mathcal{L}\left(D+\sum_{i=1}^{r} G_{i}-E\right) \rightarrow \mathbb{F}_{q}^{n}
$$

given by

$$
C(f)=\left(c_{1,1}, \ldots, c_{1, d_{1}}, \ldots, c_{r, 1}, \ldots, c_{r, d_{r}}\right) .
$$

Let

$$
\Delta=\min _{R \subseteq[r]}\left(|R| \mid \sum_{i \in R} d_{i} \geq m\right) .
$$

3. Prove that the code C above is an $[n, k, d]_{q}$-linear code with dimension $k \geq$ $n-m-g+1$ and distance $d \geq \Delta$. Guidance: given $f \in \mathcal{L}\left(D+\sum_{i=1}^{r} G_{i}-E\right)$, consider the subset $R \subseteq[r]$ such that $i \in R$ if and only if $c_{i, j} \neq 0$ for some $j \in\left[d_{i}\right]$.

We now illustrate the power of this general construction of codes, by constructing a specific code over the binary field. To this end, consider the rational function field $\mathbb{F}_{2}(x) / \mathbb{F}_{2}$.
4. Please specify 3 rational places of this function field, a degree 2 place, two degree 3 places, and one place of degree 7 (for the latter you can use the fact that $x^{7}+x+1$ is irreducible over \mathbb{F}_{2}).

We denote the first six places you wrote down as an answer to the above item by P_{1}, \ldots, P_{6}, and the latter, degree 7 place, by E. Furthermore, for $i \in[6]$, let G_{i} denote the principal divisor P_{i}. Finally, we take D to be the zero divisor (why does this choice of D satisfy the hypothesis of the general construction described above?).
5. What are the parameters of the code resulted by these choices of G_{1}, \ldots, G_{6}, D and E ?
6. Write down a basis for $\mathcal{L}\left(G_{1}+\cdots+G_{6}-E\right)$. Don't use a computer - be brave.
7. Write down the generating matrix for C. Again, don't use a computer.

